数 学 试 卷
1.本试卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷共2页,第Ⅱ卷共8页.全卷共九道大
考 生 须
题,25道小题.
2.本试卷满分120分,考试时间120分钟.
3.在试卷(包括第Ⅰ卷和第Ⅱ卷)密封线内准确填写区(县)名称、毕业学4.考试结束后,将试卷和答题卡一并交回.
知: 校、姓名、报名号和准考证号.
第Ⅰ卷(机读卷 共32分)
考 生 须 知:
一、选择题(共8道小题,每小题4分,共32分)
..
下列各题均有四个选项,其中只有一个是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.
1.6的绝对值等于( ) A.6
B.
1.第Ⅰ卷从第1页到第2页,共2页,共一道大题,8道小题. 2.考生须将所选选项按要求填涂在答题卡上,在试卷上作答无效.
1 6C.1 6D.6
2.截止到2008年5月19日,已有21 600名中外记者成为北京奥运会的注册记者,创历届奥运会之最.将21 600用科学记数法表示应为( ) A.0.21610
5
B.21.610
3
C.2.1610
3
D.2.1610
43.若两圆的半径分别是1cm和5cm,圆心距为6cm,则这两圆的位置关系是( ) A.内切
B.相交
C.外切
D.外离
4.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是( ) A.50,20
B.50,30
C.50,50
D.135,50
5.若一个多边形的内角和等于720,则这个多边形的边数是( ) A.5
B.6
C.7
D.8
6.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是( ) A.
1 5B.
2 5C.
1 2D.
3 57.若
x2y30,则xy的值为( )
B.6
C.5
D.6
A.8
8.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如右图所示.若沿OM将圆锥侧面剪开并展开,所得侧
面展开图是( )
O
O O 年北京市高级中等学校招生考试O 2008 P P P M
A.
考 生
P O
P M
M
数 学 试 卷 B
M M
CD.
. 第Ⅱ卷(非机读卷 共88分) .
1.第Ⅱ卷从第1页到第8页,共8页,共八道大题,17道小题.
须 知: 2.除画图可以用铅笔外,答题必须用黑色或蓝色钢笔、圆珠笔或签字笔. 二、填空题(共4道小题,每小题4分,共16分) 9.在函数
y1中,自变量x的取值范围是 . 2x132A D B
E C
10.分解因式:aab .
11.如图,在△ABC中,D,E分别是AB,AC的中点, 若DE2cm,则BC cm.
b2b5b8b1112.一组按规律排列的式子:,3,3,4,…(ab0),其中第7个式子是 ,第
aaaan个式子是 (n为正整数).
三、解答题(共5道小题,共25分) 13.(本小题满分5分)
10计算:82sin45(2).
3解:
14.(本小题满分5分)
解不等式5x12≤2(4x3),并把它的解集在数轴上表示出来. 解:
15.(本小题满分5分) 求证:ACCD. 证明:
16.(本小题满分5分)
B
0 1 2 3 已知:如图,C为BE上一点,点A,D分别在BE两侧.AB∥ED,ABCE,BCED.
A C E
1如图,已知直线ykx3经过点M,求此直线与x轴,y轴的交点坐标. 解:
17.(本小题满分5分) 已知x3y0,求解:
四、解答题(共2道小题,共10分) 18.(本小题满分5分)
D y M O 1 1 x 2xy(xy)的值. 22x2xyy如图,在梯形的长. 解:
ABCD中,AD∥BC,ABAC,B45,AD2,BC42,求DCA D
19.(本小题满分5分)
已知:如图,在Rt△ABC中,C90,点O在
B O为圆心,OA长为半径的圆与C AB上,以AC,AB分别交于点D,E,且CBDA.
(1)判断直线BD与O的位置关系,并证明你的结论; (2)若AD:AO8:5,BC2,求BD的长.
解:(1) (2)
五、解答题(本题满分6分)
A
D C B
E O 20.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:
“限塑令”实施后,使用各种
“限塑令”实施后,塑料购物袋使用后的处理方式统计表 “限塑令”实施前,平均一次购物使用购物袋的人数分布统计图
..处理方式 直接丢弃 直接做垃圾袋 再次购物使用 其它
不同数量塑料购物袋的人数统计图 其它 选该项的人数占 人数/位 5% 5% 35% 49% 11% 收费塑料购物袋 总人数的百分比 _______% 40 37 请你根据以上信息解答下列问题: 35 30 押金式环保袋(1)补全图1,“限塑令”实施前,如果每天约有2 000人次到该超市购物.根据这100位顾客平均一26 25 24% 次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋? 20 ...........15 11 (2)补全图2,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能9 10 4 5 对环境保护带来积极的影响. 3 自备袋 0 1 1)2 7 塑料袋数/个 解:( 3 4 5 6 46%
图2 图1 (2) 六、解答题(共2道小题,共9分)
21.(本小题满分5分)列方程或方程组解应用题:
京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米? 解:
22.(本小题满分4分)
ABC的边长为8,D为AB边上的点,过点D作DG∥BC交AC于点
G.DEBC于点E,过点G作GFBC于点F,把三角形纸片ABC分别沿DG,DE,GF按图1所示方式折叠,点A,B,C分别落在点A,B,C处.若点A,B,C在矩形DEFG内或其边上,且互不重合,此时我们称△ABC(即图中阴影部分)为“重叠三角形”.
已知等边三角形纸片
A (1)若把三角形纸片ABC放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),
D G 点A2所示,请直接写出此时重叠三角形ABC的面,B,C,D恰好落在网格图中的格点上.如图D G 积;
B
E
F 图1
B E 图2
F C C
A (2)实验探究:设
AD的长为m,若重叠三角形ABC存在.试用含m的代数式表示重叠三角形
ABC的面积,并写出m的取值范围(直接写出结果,备用图供实验,探究使用).
A A 解:(1)重叠三角形ABC的面积为 ; 七、解答题(本题满分7分) (2)用含m的代数式表示重叠三角形ABC的面积为 ;m的取值范围为 .
mxm23.已知:关于x的一元二次方程C(3CB B x2m20( m2) 0). 备用图 备用图
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1x2).若求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m. (1)证明: (2)解:
y (3)解: 4 八、解答题(本题满分7分) 3 2 2x轴交于A,B两点24.在平面直角坐标系xOy中,抛物线yxbxc与1 (点A在点B的左侧),
x -4 -3 -2 -1 O 1 2 3 4 1 与y轴交于点C,点B的坐标为(3,沿y轴向上平移3个单位长度后恰好经过0),将直线ykx--2 -3 B,C两点.
-4 (1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且APDACB,求点P的坐标;
y (3)连结CD,求OCA与OCD两角和的度数. 解:(1) (2) (3)
九、解答题(本题满分8分) 25.请阅读下列材料:
4 3 2 1 2y是关于m的函数,且yx22x1,
x -2 -1 O 1 2 3 4 问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中-1 点,连结PG,PC.若ABCBEF60-2 ,探究PG与PC的位置关系及PG的值. PC小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.
C D
D 请你参考小聪同学的思路,探究并解决下列问题: C
P PGF (1)写出上面问题中线段PG与PC的位置关系及P 的值; G
G PCF
B 的对角线A E A 绕点B顺时针旋转,使菱形(2)将图1中的菱形BEFGBEFGBF恰好与菱形ABCD的边
B
(如图2).你在(1)中得到的两个结论是否发生变化?AB在同一条直线上,原问题中的其他条件不变图1 图2 E
写出你的猜想并加以证明.
(3)若图1中ABCBEF2(090),将菱形BEFG绕点B顺时针旋转任意角度,原
PG的值(用含的式子表示). PCPG解:(1)线段PG与PC的位置关系是 ; .
PC问题中的其他条件不变,请你直接写出(2)
2008年北京市高级中等学校招生考试
数学试卷答案及评分参考
阅卷须知:
1.一律用红钢笔或红圆珠笔批阅,按要求签名. 2.第Ⅰ卷是选择题,机读阅卷.
3.第Ⅱ卷包括填空题和解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
第Ⅰ卷 (机读卷 共32分)
一、选择题(共8道小题,每小题4分,共32分) 题号 答案
1 A
2 D
3 C
4 C
5 B
6 B
7 B
8 D
第Ⅱ卷 (非机读卷 共88分)
二、填空题(共4道小题,每小题4分,共16分)
题号 答案
9
10
11 4
12
三、解答题(共5道小题,共25分) 13.(本小题满分5分)
10解:82sin45(2π)
3222213 ······················································································· 4分 2122. ······································································································ 5分
14.(本小题满分5分)
解:去括号,得5x12≤8x6. ········································································ 1分 移项,得5x8x≤612. ·············································································· 2分 合并,得3x≤6. ··························································································· 3分 系数化为1,得x≥2. ····················································································· 4分 不等式的解集在数轴上表示如下:
······················································································································· 5分
0 1 2 3 15.(本小题满分5分)
AB∥ED,
································································································· 2分 BE. ·
在△ABC和△CED中,
······················································································ 4分 △ABC≌△CED. ·
································································································· 5分 ACCD. ·
证明:
16.(本小题满分5分)
解:由图象可知,点M(2,················································ 1分 1)在直线ykx3上, ·
2k31.
解得k2. ··································································································· 2分
直线的解析式为y2x3. ················· 3分
令y0,可得x3. 23直线与x轴的交点坐标为,0. ··································································· 4分
2令x0,可得y3.
直线与y轴的交点坐标为(0,···································································· 5分 3). ·
17.(本小题满分5分) 解:
2xy(xy) 22x2xyy2xy(xy) ···························································································· 2分
(xy)22xy. ······································································································ 3分 xy当x3y0时,x3y. ················································································· 4分
原式6yy7y7. ·················································································· 5分
3yy2y2四、解答题(共2道小题,共10分) 18.(本小题满分5分)
解法一:如图1,分别过点A,D作AEBC于点E, ······································· 1分 DFBC于点F. ·AE∥DF. 又AD∥BC,
四边形AEFD是矩形.
A D
EFAD2. ······································· 2分
B E F
图1
C
ABAC,B45,BC42, ABAC.
1AEECBC22.
2DFAE22,
CFECEF2 ························································································ 4分
在Rt△DFC中,DFC90,
············································· 5分 DCDF2CF2(22)2(2)210. ·
解法二:如图2,过点D作DF∥AB,分别交AC,BC于点E,F.························ 1分
ABAC,
AEDBAC90.
A E B F
图2
C D
AD∥BC,
DAE180BBAC45.
在Rt△ABC中,BAC90,B45,BC42,
ACBCsin454224 ··································································· 2分 2在Rt△ADE中,AED90,DAE45,AD2,
DEAE1.
···················································································· 4分 CEACAE3. ·
在Rt△DEC中,CED90,
·························································· 5分 DCDE2CE2123210. ·19. (本小题满分5分)
·········································································· 1分 O相切. ·
证明:如图1,连结OD. OAOD, AADO. 解:(1)直线BD与
C90, CBDCDB90.
又
C D A
B
图1 CBDA,
ADOCDB90. ODB90.
O E 直线BD与O相切. ····················································································· 2分 (2)解法一:如图1,连结DE.
AE是O的直径, ADE90.
AD:AO8:5,
AD4························································································ 3分 cosA. ·
AE5C90,CBDA,
cosCBDBC4················································································ 4分 . ·
BD55········································································ 5分 BC2, BD. ·21解法二:如图2,过点O作OHAD于点H. AHDHA.D
2AD:AO8:5,
C AH4···················· 3分 cosA. ·
AO5D C90,CBDA,
A
H B
O BC4································· 4分 cosCBD. ·
BD5图2 BC2,
5···································································································· 5分 BD. ·2五、解答题(本题满分6分)
解:(1)补全图1见下图. ················································································· 1分
“限塑令”实施前,平均一次购物使用9137226311不同数量塑料4105..4购物袋的人数统计图637300
3(个).
人数/位 100100这100位顾客平均一次购物使用塑料购物袋的平均数为3个. ······································ 3分
40 37 200036000. 35 30 26 估计这个超市每天需要为顾客提供6000个塑料购物袋. ·············································· 4分 25 (2)图2中,使用收费塑料购物袋的人数所占百分比为··································· 5分 25%. ·20 15 11 10 根据图表回答正确给1分,例如:由图2和统计表可知,购物时应尽量使用自备袋和押金式环保袋,少9 10 4 3 5 用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购物袋的使用量,为环保做贡献.6分 0 六、解答题(共2道小题,共9分)1 2 3 4 5 6 7 塑料袋数/个
图1 x千米,则由天津返回北京的平均速度是每21.解:设这次试车时,由北京到天津的平均速度是每小时
小时(x40)千米. ··························································································· 1分
3061x(x40). ······································································· 3分 602解得x200. ·································································································· 4分
依题意,得
答:这次试车时,由北京到天津的平均速度是每小时200千米. ··································· 5分 22.解:(1)重叠三角形ABC的面积为3. ····················································· 1分
(2)用含m的代数式表示重叠三角形ABC的面积为3(4m); ·························· 2分
28m的取值范围为≤m4. ··············································································· 4分
3七、解答题(本题满分7分) 23.(1)证明:
mx2(3m2)x2m20是关于x的一元二次方程,
[(3m2)]24m(2m2)m24m4(m2)2.
当m0时,(m2)0,即0.
2方程有两个不相等的实数根. ············································································· 2分
(3m2)(m2)(2)解:由求根公式,得x.
2m2m2或x1.······················································································ 3分 xmm0,
2m22(m1)1.
mmx1x2,
2m2. ··················································································· 4分 m2m22yx22x121.
mm2y 即y(m0)为所求. ·························· 5分
4 mx11,x2(3)解:在同一平面直角坐标系中分别画出
y2(m0)与y2m(m0)的图象. m3 2 1 -4 -3 -2 -1 O 1 2 3 4 -1 -2 -3 -4 x ································································ 6分 由图象可得,当m≥1时,y≤2m. ············· 7分 八、解答题(本题满分7分) 24.解:(1)
ykx沿y轴向上平移3个单位长度后经过y轴上的点C,
C(0,3).
设直线BC的解析式为ykx3.
B(3,0)在直线BC上,
3k30. 解得k1.
直线BC的解析式为yx3. ······································································ 1分
抛物线yxbxc过点B,C,
2b4,解得
c3.抛物线的解析式为yx24x3. ··································································· 2分
(2)由yx4x3. 可得D(2,1),A(1,0).
2y 4 3 C 2 1 -2 -1 O -1 -2 图1 A P E B 1 2 F 3 4 D x
OB3,OC3,OA1,AB2. 可得△OBC是等腰直角三角形.
OBC45,CB32.
如图1,设抛物线对称轴与x轴交于点F,
AF1AB1. 2过点A作AEBC于点E.
AEB90.
可得BEAE2,CE22.
在△AEC与△AFP中,AECAFP90,ACEAPF,
△AEC∽△AFP.
222AECE,. 1PFAFPF解得PF2.
点P在抛物线的对称轴上,
点P的坐标为(2,2)或(2,2). ········································································ 5分
,0)关于(3)解法一:如图2,作点A(1连结AC,AD,
0). y轴的对称点A,则A(1,可得ACAC10,OCAOCA. 由勾股定理可得CD20,AD10. 又AC10,
222y 4 3 C 2 1 A B 1 2 F 3 4 D 图2
x
ADACCD.
222-1 O -1 -2 △ADC是等腰直角三角形,CAD90,
DCA45.
OCAOCD45. OCAOCD45.
即OCA与OCD两角和的度数为45. ····························································· 7分
y 解法二:如图3,连结BD. 同解法一可得CD20,AC10.
4 3 C 2 1 -2 -1 O -1 -2 A B 1 2 F 3 4 D 图3
x
在Rt△DBF中,DFB90,BFDF1,
DBDFBF2.
在△CBD和△COA中,
22DB2BC32CD202,2,2. AO1OC3CA10DBBCCD. AOOCCA△CBD∽△COA. BCDOCA. OCB45,
OCAOCD45.
即OCA与OCD两角和的度数为45. ····························································· 7分 九、解答题(本题满分8分)
25.解:(1)线段PG与PC的位置关系是PGPC;
PG···································································································· 2分 3. ·
PC(2)猜想:(1)中的结论没有发生变化.
证明:如图,延长GP交AD于点H,连结CH,CG.
P是线段DF的中点, FPDP.
由题意可知AD∥FG. GFPHDP.
GPFHPD, △GFP≌△HDP.
GPHP,GFHD. 四边形ABCD是菱形,
CDCB,HDCABC60.
D H
A
P
C
G
B
E
F
由ABCBEF60,且菱形BEFG的对角线BF恰好与菱形上,
可得GBC60.
ABCD的边AB在同一条直线
HDCGBC. 四边形BEFG是菱形, GFGB. HDGB. △HDC≌△GBC.
CHCG,DCHBCG.
DCHHCBBCGHCB120.
即HCG120.
CHCG,PHPG,
PGPC,GCPHCP60.
PG································································································· 6分 3. ·
PCPG(3)················································································ 8分 tan(90).·
PC
因篇幅问题不能全部显示,请点此查看更多更全内容