您的当前位置:首页正文

一次函数练习题(含答案)

2020-09-06 来源:伴沃教育


一次函数巩固练习

一、选择题:

1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为( ) (A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+3 2.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过( ) (A)一象限 (B)二象限 (C)三象限 (D)四象限 3.直线y=-2x+4与两坐标轴围成的三角形的面积是( ) (A)4 (B)6 (C)8 (D)16 4.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为( ) (A)y1>y2 (B)y1=y2 (C)y15.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•则有一组a,b的取值,使得下列4个图中的一个为正确的是( )

6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第( )象限. (A)一 (B)二 (C)三 (D)四

7.一次函数y=kx+2经过点(1,1),那么这个一次函数( ) (A)y随x的增大而增大 (B)y随x的增大而减小 (C)图像经过原点 (D)图像不经过第二象限

8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 9.要得到y=-

33x-4的图像,可把直线y=-x( ). 22 (A)向左平移4个单位 (B)向右平移4个单位

(C)向上平移4个单位 (D)向下平移4个单位

10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为( ) (A)m>-

11 (B)m>5 (C)m=- (D)m=5 44 11.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是( ). (A)k<

111 (B)1 (D)k>1或k< 333 12.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作

( )

(A)4条 (B)3条 (C)2条 (D)1条 13.已知abc≠0,而且

abbcca=p,那么直线y=px+p一定通过( ) cab (A)第一、二象限 (B)第二、三象限 (C)第三、四象限 (D)第一、四象限

14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是( ) (A)-415.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符

合条件的点P共有( )

(A)1个 (B)2个 (C)3个 (D)4个 二、填空题

1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.

2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m的取值范围是

________.

3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个

符合上述条件的函数关系式:_________.

4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.

5.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•则点P•的坐标为

__________.

6.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.

7.y=

2x与y=-2x+3的图像的交点在第_________象限. 3 8.若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,•则一次函数的解析式

为________. 三、解答题

1.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1. (1)写出y与x之间的函数关系式;

(2)如果x的取值范围是1≤x≤4,求y的取值范围.

2.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:

第一档 第二档 第三档 第四档 40.0 74.8 42.0 78.0 45.0 82.8 凳高x(cm) 37.0 桌高y(cm) 70.0 (1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.

3.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?

4.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.

5.已知:如图一次函数y=

1x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)2作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.

6.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:

甲型收割机的租金 乙型收割机的租金 1600元/台 1200元/台 A地 1800元/台 B地 1600元/台 (1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.

(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.

因篇幅问题不能全部显示,请点此查看更多更全内容