本节课是人教版普通高中课程标准实验教科书A版必修4的第二章《平面向量》的第4节《平面向量的数量积》的第一课时《平面向量数量积的物理背景及其含义》。数量积是继向量的线性运算(加法、减法、向量的数乘)后的又一种新的运算,它的内容很丰富,包括定义、几何意义、性质与运算律,而且在物理和几何中具有广泛的应用。
它与向量的线性运算有着本质的区别,运算结果是一个数量。数量积为解决有关几何问题提供了方便,可以利用平面向量的数量积求解向量的模及向量的夹角,解决线段的垂直问题。
本节内容教材共分为两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。向量数量积运算是继向量的线性运算后的一种新的重要的运算,它有明显的物理意义、几何意义。向量数量积是代数、几何与三角的结合点,应用广泛,很好地体现了数形结合的数学思想。
在进行运算性质的论证时,正是这一数学思想运用的良好体现.
1
因篇幅问题不能全部显示,请点此查看更多更全内容