数学知识点总结。
当我们的任务完成时,往往都需要写一份总结。写总结可以推动我们的工作向前不断前进。每写一次总结,我们就可以想的越多:有时候,为他人创造价值,也是在为自己创造价值。那么我们写一篇总结需要考虑什么呢?小编特地为大家精心收集和整理了“热搜总结: 中考数学知识点回顾范例”,仅供参考,欢迎大家阅读。
一、目标与要求
1.了解一元二次方程及有关概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,应用一元二次方程概念解决一些简单题目。
2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程,掌握依据实际问题建立一元二次方程的数学模型的方法,应用熟练掌握以上知识解决问题。
二、重点
1.一元二次方程及其它有关的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题。
2.判定一个数是否是方程的根;
3.用配方法、公式法、因式分解法降次──解一元二次方程。
4.运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次──转化的数学思想。
5.利用实际问题建立一元二次方程的数学模型,并解决这个问题.
三、难点
1.一元二次方程配方法解题。
2.通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。
3.用公式法解一元二次方程时的讨论。
4.通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程。
5.建立一元二次方程实际问题的数学模型,方程解与实际问题解的区别。
6.由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根。
7.知识框架
四、知识点、概念总结
1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
2.一元二次方程有四个特点:
(1)含有一个未知数;
(2)且未知数次数最高次数是2;
(3)是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为 ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。
(4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0)
3. 一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0)。
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
延伸阅读
月度总结精选: 高二数学知识点回顾模板
不管我们是学习,还是工作中,总会有写总结的时候。通过总结,我们可以更好的认识自己、反思自己。每写一次总结,我们就可以想的越多:每一份工作都是有意义的,它们的价值也是巨大的。那么如何着手动笔撰写总结报告呢?小编特地为大家精心收集和整理了“月度总结精选: 高二数学知识点回顾模板”,仅供您在工作和学习中参考。
一、直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即 。斜率反映直线与轴的倾斜程度。
当 时, ; 当 时, ; 当 时, 不存在。
②过两点的直线的斜率公式:
注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式: 直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式: ,直线斜率为k,直线在y轴上的截距为b
③两点式: ( )直线两点 ,
④截矩式:
其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 。
⑤一般式: (A,B不全为0)
注意:各式的适用范围 特殊的方程如:
平行于x轴的直线: (b为常数); 平行于y轴的直线: (a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数)
(二)垂直直线系
垂直于已知直线 ( 是不全为0的常数)的直线系: (C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系: ,直线过定点 ;
(ⅱ)过两条直线 , 的交点的直线系方程为
( 为参数),其中直线 不在直线系中。
(6)两直线平行与垂直
当 , 时,;
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(7)两条直线的交点
相交
交点坐标即方程组 的一组解。
方程组无解 ; 方程组有无数解 与 重合
(8)两点间距离公式:设 是平面直角坐标系中的两个点,
则
(9)点到直线距离公式:一点 到直线 的距离
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解。
二、圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程
(1)标准方程 ,圆心 ,半径为r;
(2)一般方程
当 时,方程表示圆,此时圆心为 ,半径为
当 时,表示一个点; 当 时,方程不表示任何图形。
(3)求圆方程的方法:
一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线 ,圆 ,圆心 到l的距离为 ,则有 ; ;
(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
设圆 ,
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当 时两圆外离,此时有公切线四条;
当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当 时,两圆内切,连心线经过切点,只有一条公切线;
当 时,两圆内含; 当 时,为同心圆。
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
圆的辅助线一般为连圆心与切线或者连圆心与弦中点
三、立体几何初步
1、柱、锥、台、球的结构特征
(1)棱柱:
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
几何特征:①上下底面是相似的.平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点
(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、
俯视图(从上向下)
注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法
斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
4、柱体、锥体、台体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c为底面周长,h为高, 为斜高,l为母线)
(3)柱体、锥体、台体的体积公式
(4)球体的表面积和体积公式:V = ; S =
4、空间点、直线、平面的位置关系
公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
应用: 判断直线是否在平面内
用符号语言表示公理1:
公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
符号:平面α和β相交,交线是a,记作α∩β=a。
符号语言:
公理2的作用:
①它是判定两个平面相交的方法。
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。
③它可以判断点在直线上,即证若干个点共线的重要依据。
公理3:经过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。
公理3及其推论作用:
①它是空间内确定平面的依据
②它是证明平面重合的依据
公理4:平行于同一条直线的两条直线互相平行
空间直线与直线之间的位置关系
① 异面直线定义:不同在任何一个平面内的两条直线
② 异面直线性质:既不平行,又不相交。
③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
④ 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。
求异面直线所成角步骤:
A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。
B、证明作出的角即为所求角
C、利用三角形来求角
(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
(8)空间直线与平面之间的位置关系
直线在平面内——有无数个公共点.
三种位置关系的符号表示:a α a∩α=A a‖α
(9)平面与平面之间的位置关系:平行——没有公共点;α‖β
相交——有一条公共直线。α∩β=b
5、空间中的平行问题
(1)直线与平面平行的判定及其性质
线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
线线平行 线面平行
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行 线线平行
(2)平面与平面平行的判定及其性质
两个平面平行的判定定理
(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行
(线面平行→面面平行),
(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。
(线线平行→面面平行),
(3)垂直于同一条直线的两个平面平行,
两个平面平行的性质定理
(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)
(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)
7、空间中的垂直问题
(1)线线、面面、线面垂直的定义
①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。
(2)垂直关系的判定和性质定理
①线面垂直判定定理和性质定理
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
②面面垂直的判定定理和性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
9、空间角问题
(1)直线与直线所成的角
①两平行直线所成的角:规定为 。
②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。
③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线 ,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。
(2)直线和平面所成的角
①平面的平行线与平面所成的角:规定为 。
②平面的垂线与平面所成的角:规定为 。
③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。
在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,
在解题时,注意挖掘题设中两个主要信息:
(1)斜线上一点到面的垂线;
(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。
(3)二面角和二面角的平面角
①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角
④求二面角的方法
定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角
垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角
[总结分享] 高中数学知识点回顾(篇四)
平常的学习工作中,我们一般会需要写一份或者几份总结报告。总结写多了,我们就会发现其中蕴含的规律。每写一次总结,就仿佛在告诉我们:有时候,只有坚持一件事不放弃,我们才有可能成功。那么撰写总结需要注意哪些方面呢?下面是小编精心为您整理的“[总结分享] 高中数学知识点回顾(篇四)”,但愿对您的学习工作带来帮助。
一、集合、简易逻辑
1、集合;
2、子集;
3、补集;
4、交集;
5、并集;
6、逻辑连结词;
7、四种命题;
8、充要条件。
二、函数
1、映射;
2、函数;
3、函数的单调性;
4、反函数;
5、互为反函数的函数图象间的关系;
6、指数概念的扩充;
7、有理指数幂的运算;
8、指数函数;
9、对数;
10、对数的运算性质;
11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)
1、数列;
2、等差数列及其通项公式;
3、等差数列前n项和公式;
4、等比数列及其通顶公式;
5、等比数列前n项和公式。
四、三角函数
1、角的概念的推广;
2、弧度制;
3、任意角的三角函数;
4、单位圆中的三角函数线;
5、同角三角函数的基本关系式;
6、正弦、余弦的诱导公式;
7、两角和与差的正弦、余弦、正切;
8、二倍角的正弦、余弦、正切;
9、正弦函数、余弦函数的图象和性质;
10、周期函数;
11、函数的奇偶性;
12、函数的图象;
13、正切函数的图象和性质;
14、已知三角函数值求角;
15、正弦定理;
16、余弦定理;
17、斜三角形解法举例。
五、平面向量
1、向量;
2、向量的加法与减法;
3、实数与向量的积;
4、平面向量的坐标表示;
5、线段的定比分点;
6、平面向量的数量积;
7、平面两点间的距离;
8、平移。
六、不等式
1、不等式;
2、不等式的'基本性质;
3、不等式的证明;
4、不等式的解法;
5、含绝对值的不等式。
七、直线和圆的方程
1、直线的倾斜角和斜率;
2、直线方程的点斜式和两点式;
3、直线方程的一般式;
4、两条直线平行与垂直的条件;
5、两条直线的交角;
6、点到直线的距离;
7、用二元一次不等式表示平面区域;
8、简单线性规划问题;
9、曲线与方程的概念;
10、由已知条件列出曲线方程;
11、圆的标准方程和一般方程;
12、圆的参数方程。
八、圆锥曲线
1、椭圆及其标准方程;
2、椭圆的简单几何性质;
3、椭圆的参数方程;
4、双曲线及其标准方程;
5、双曲线的简单几何性质;
6、抛物线及其标准方程;
7、抛物线的简单几何性质。
九、直线、平面、简单何体
1、平面及基本性质;
2、平面图形直观图的画法;
3、平面直线;
4、直线和平面平行的判定与性质;
5、直线和平面垂直的判定与性质;
6、三垂线定理及其逆定理;
7、两个平面的位置关系;
8、空间向量及其加法、减法与数乘;
9、空间向量的坐标表示;
10、空间向量的数量积;
11、直线的方向向量;
12、异面直线所成的角;
13、异面直线的公垂线;
14、异面直线的距离;
15、直线和平面垂直的性质;
16、平面的法向量;
17、点到平面的距离;
18、直线和平面所成的角;
19、向量在平面内的射影;
20、平面与平面平行的性质;
21、平行平面间的距离;
22、二面角及其平面角;
23、两个平面垂直的判定和性质;
24、多面体;
25、棱柱;
26、棱锥;
27、正多面体;
28、球。
十、排列、组合、二项式定理
1、分类计数原理与分步计数原理;
2、排列;
3、排列数公式;
4、组合;
5、组合数公式;
6、组合数的两个性质;
7、二项式定理;
8、二项展开式的性质。
十一、概率
1、随机事件的概率;
2、等可能事件的概率;
3、互斥事件有一个发生的概率;
4、相互独立事件同时发生的概率;
5、独立重复试验。
必修一函数重点知识整理
1、函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(—x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(—x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2、复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3、函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=—x+a)的对称曲线C2的方程为f(y—a,x+a)=0(或f(—y+a,—x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a—x,2b—y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a—x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x—a)与y=f(b—x)的图像关于直线x=对称;
4、函数的周期性
(1)y=f(x)对x∈R时,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=—f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;
5、方程k=f(x)有解k∈D(D为f(x)的值域);
6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7、(1)(a>0,a≠1,b>0,n∈R+);
(2)l og a N=(a>0,a≠1,b>0,b≠1);
(3)l og a b的符号由口诀“同正异负”记忆;
(4)a log a N= N(a>0,a≠1,N>0);
8、判断对应是否为映射时,抓住两点:
(1)A中元素必须都有象且唯一;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10、对于反函数,应掌握以下一些结论:
(1)定义域上的单调函数必有反函数;
(2)奇函数的反函数也是奇函数;
(3)定义域为非单元素集的偶函数不存在反函数;
(4)周期函数不存在反函数;
(5)互为反函数的两个函数具有相同的单调性;
(6)y=f(x)与y=f—1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。
11、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
13、恒成立问题的处理方法:
(1)分离参数法;
(2)转化为一元二次方程的根的分布列不等式(组)求解。
拓展阅读:高中数学复习方法
1、把答案盖住看例题
例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。
所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。
2、研究每题都考什么
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。
3、错一次反思一次
每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。
学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。
4、分析试卷总结经验
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
总结收藏: 高二数学知识点回顾季度范文精选
在我们的学习或者工作中,总少不了要写总结。总结写多了,我们就会发现其中蕴含的规律。每多写一次总结,我们的进步就越显著:有时候,为他人创造价值,也是在为自己创造价值。那么你知道怎么书写优秀的总结报告吗?小编特地为您收集整理“总结收藏: 高二数学知识点回顾季度范文精选”,仅供参考,欢迎大家阅读。
1、学会三视图的分析:
2、斜二测画法应注意的地方:
(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x轴的线段长不变,平行于y轴的线段长减半。(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度。
3、表(侧)面积与体积公式:
⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h
⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:
⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=
⑷球体:①表面积:S=;②体积:V=
4、位置关系的证明(主要方法):注意立体几何证明的书写
(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
(2)平面与平面平行:①线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线
5、求角:(步骤———————Ⅰ。找或作角;Ⅱ。求角)
⑴异面直线所成角的求法:平移法:平移直线,构造三角形;
⑵直线与平面所成的角:直线与射影所成的角
【热搜总结】 初中语文知识点回顾范文
在我们的平时工作生活中,有时可能会需要写总结报告。总结写多了,我们就会发现其中蕴含的规律。每多写一次总结,我们的进步就越显著:不管是在学习还是在工作上,我们唯有尽心、努力,才可以创造价值。那么我们在写总结时可以从哪方面着手呢?小编特地为您收集整理“【热搜总结】 初中语文知识点回顾范文”,供您参考,希望能够帮助到大家。
《狼》知识要点归纳
一、文学常识:
体裁:是短篇小说,选自清代小说家蒲松龄,《聊斋志异》蒲松龄、字留仙,一字剑臣,别号柳泉居士,世称“聊斋先生”。 “聊斋”是他的书房的名字,“志”是记述的意思,“异”是指奇异的事。郭沫若盛赞蒲氏的著作“写鬼写妖高人一等,刺贪刺虐入骨三分”。
二、特殊字词
1.通假字
止有剩骨 “止”通“只”
2、古今异义:
①股:古义为大腿,身已半入,只露尻尾;今为屁股。
②禽兽之变诈几何哉——几何:古义:多少,这里是能有几何的意思。 今义:数学中的一个分支。
③耳:古文言文中出现在句尾时,通常解释为"罢了",只增笑耳。今为耳朵。3、词语活用:
①其一犬坐于前(犬,名词作状语,像狗一样)
③一狼洞其中(洞,名词作动词,"打洞"的意思。另一只狼正在那里打洞。)
④恐前后受其敌(敌,名词做动词,攻击,胁迫的意思)
⑤意将隧入以攻其后也(隧,名词作动词:从柴草堆中打洞。)
4、特殊句式
投以骨 :应为“以骨投之”,意思是“把骨头扔给狼”。
5、虚词:
①之:(1)助词,无实在意义,用在表示时间的词后面,起凑足音节。久之。 (2)代词,它。例:又数刀毙之(代狼)(3)助词,的。例:禽兽之变诈几何哉 (4)助词,取消句子独立性,不翻译。例:而两狼之并驱如故
②其:(1)恐前后受其敌:代狼 (2)场主积薪其中:代指麦场 (3)屠乃奔倚其下 :代指积薪(4)一狼洞其中:代指积薪 (5)意将隧入以攻其后也:代指屠夫。(6)屠自后断其股:代狼
③以:(1)意将隧入以攻其后也。连词,表目的,可译为“来”。(2)以刀劈狼首:介词,表示工具,用。
④于:介词,在。例:其一犬坐于前。
⑤而:连词,表转折,但,可是。 例:而两狼之并驱如故
6、一词多义:
(1)意:意将隧入以攻其后也。企图。意暇甚:神情。
(2)敌:恐前后受其敌 : 敌对,这里是胁迫、攻击。 盖以诱敌: 敌方 。
(3)前:狼不敢前:向前 前后受其敌:前面
三、全文翻译
有个屠户天晚回家,担子里的肉已经卖完了,只剩下一些骨头。路上遇到两只狼,紧随着走了很远。
屠户害怕了,拿起一块骨头扔过去。一只狼得到骨头停下了,另一只狼仍然跟着。屠户又拿起一块骨头扔过去,后得到骨头的那只狼停下了,可是先得到骨头的那只狼又跟上来。骨头已经扔完了,两只狼像原来一样一起追赶。
屠户很窘迫,恐怕前后一起受到狼的攻击。看见野地里有一个打麦场,场主人把柴草堆在打麦场里,覆盖成小山似的。屠户于是奔过去倚靠在柴草堆下面,放下担子拿起屠刀。两只狼都不敢向前,瞪眼朝着屠户。
过了一会儿,一只狼径直走开,另一只狼像狗似的蹲坐在前面。时间长了,那只狼的眼睛似乎闭上了,神情悠闲得很。屠户突然跳起来,用刀劈狼的脑袋,又连砍几刀把狼杀死。屠户正要上路,转到柴草堆后面一看,只见另一只狼正在柴草堆里打洞,想要钻过去从背后对屠户进行攻击。狼的身子已经钻进一半,只有屁股和尾巴露在外面。屠户从后面砍断了狼的后腿,也把狼杀死。这才明白前面的那只狼假装睡觉,原来是用来诱惑敌方的。
狼也太狡猾了,可是一会儿两只狼都被砍死,禽兽的欺骗手段能有多少呢?只不过给人增加笑料罢了。
四、用原文回答。
1、表现屠夫害怕,对狼抱有幻想,一再妥协退让的词语是:屠惧,投以骨;复投之。
2、恰当表现狼贪得无厌(贪婪凶恶)的语句是:
(1)缀行甚远。⑵一狼得骨止,一狼仍从。(3)复投之,后狼止而前狼又至。(4)而两狼之并驱如故。
恰当表现狼狡诈阴险:(1)一狼径去,其一犬坐于前。⑵目似瞑,意暇甚。(3)意将遂入以攻其后也。
3、狼 “眈眈相向”不敢前的原因的句子是:屠乃奔倚其下,弛担持刀。
4、表明屠户不失时机奋起反击的词语是:“暴起”“劈”“毙”
5、文中作者议论性的语句是:狼亦黠矣,而顷刻两毙,禽兽之变诈几何哉?止增笑耳。
五、内容理解
1、按开端、发展、高潮、结局的整理故事情节.
答:第一自然段:开端:遇狼 第二、三自然段是:发展:惧狼;御狼。第四自然段是:高潮和结局:杀狼。
2、本文前四段与第5段在表达方式上有什么不同?
答:前 四段是记叙,第5段是议论;前四段是讲故事,第5段是评故事。
3.结尾段在文章中有什么作用?答:发表评论,点明故事的主题,起到画龙点睛的作用
4、文中是怎样写狼的狡猾的?
文中表现狼的狡猾的语句:“缀行甚远”“一狼得骨止??而两狼之并驱如故”“狼不敢前,眈眈相向”“一狼径去,其一犬坐于前??意暇甚”“一狼洞其中,意将隧入以攻其后也”“前狼假寐,盖以诱敌”等。
5.屠户的机智表现在哪些地方?
文章写出屠户的机智,主要是通过他的动作和行为表现出来的。
“顾野有麦场??乃奔倚其下,弛担持刀。”“屠暴起,以刀劈狼首,又数刀毙之。方欲行,转视积薪后,一狼洞其中??屠自后断其股,亦毙之。”
6.文章主旨:本文通过记叙两只狡诈的狼想要吃掉屠夫,但最终双双被屠夫毙命的故事,讽喻像狼样的恶人不论怎样狡诈,终归要失败的,并告诫人们,对待像狼一样的恶势力不要抱有幻想,要敢于斗争,善于斗争,才能取得胜利。
热搜总结: 高一语文必背知识点回顾范例
在我们的平时工作生活中,有时可能会需要写总结报告。写总结也是为了让自己变得优秀、更有能力!我们写下的总结,在另一方面提醒着我们:一个人刚开始做某件事的时候可能不会,但一直不会就是态度问题了。那么我们在写总结时要考虑什么呢?请您阅读小编辑为您编辑整理的《热搜总结: 高一语文必背知识点回顾范例》,但愿对您的学习工作带来帮助。
1、舒曼把它称为藏在花丛中的大炮,不是没有根据的。(这美好的音乐有时也是斗争的武器。是藏在花丛中的大炮。作为民族精神的支柱和基础的伟大艺术具有何等不可估量的威力。人们从肖邦音乐中获得了精神力量。)
2、只有他还住在这里,独自一人在雅致的房间里来回踱步。只有微弱的琴声在抗御风雪和寂静。只有音乐长存。(这里的他指的是肖邦的灵魂,他“身上那点最美好的东西”,肖邦的音乐就是肖邦的灵魂,它是永存的。)
3、灾难的忠实的姊妹——希望,正在阴暗的地底潜藏。
4、文化传统与传统文化并不一样,两者差别之大,几乎可以与蜜蜂和蜂蜜的差别相媲美。(传统文化指历代存在过的种种物质的、制度的和精神的文化实体和文化意识。文化传统指的是产生于历代生活,生活于民族的反复实践,形成为民族的集体意识和集体无意识,也就是民族精神。两者差别很大,但两者也有联系。民族精神存在于传统文化之中,所以可以比之为蜜蜂与蜂蜜。)
5、尼采就自诩过他是太阳,光热无穷,只是给与,不想取得。然而尼采究竟不是太阳,他发了疯。(以尼采作比,论述中国也不是太阳,不是光热无穷,不能只给予而不取得,否则将会使子孙穷困不堪。从而论证“送去主义”的行为是疯狂的。)
6、要不然,则当佳节大典之际,他们拿不出东西来,只好磕头贺喜,讨一点残羹冷炙做奖赏。
[精选总结]中考化学复习知识点回顾最新
当学习或者工作结束时,我们通常会使用到总结报告。在写总结的过程中,我们可以提升自己发现问题和解决问题的能力。每次写总结的时候,我们的大脑中都会形成新的知识:一个人刚开始做某件事的时候可能不会,但一直不会就是态度问题了。那么我们在写总结时需要注意哪些呢?小编特地为大家精心收集和整理了“[精选总结]中考化学复习知识点回顾最新”,仅供参考,大家一起来看看吧。
化合价口诀化合价一:
一价氟氯溴碘氢,还有金属钾钠银。
二价氧钡钙镁锌,铝三硅四都固定。
氯氮变价要注意,一二铜汞一三金。
二四碳铅二三铁,二四六硫三五磷。
常见元素的主要化合价二:
氟氯溴碘负一价;正一氢银与钾钠。
氧的负二先记清;正二镁钙钡和锌。
正三是铝正四硅;下面再把变价归。
全部金属是正价;一二铜来二三铁。
锰正二四与六七;碳的二四要牢记。
非金属负主正不齐;氯的负一正一五七。
氮磷负三与正五;不同磷三氮二四。
硫有负二正四六;边记边用就会熟。
化合价口诀三:
一价氢氯钾钠银;二价氧钙钡镁锌,
三铝四硅五氮磷;二三铁二四碳,
二四六硫全都齐;铜以二价最常见。
化合价口诀四:
一价氢氯钾钠银
二价氧钙钡镁锌
三铝四硅五价磷
二三铁二四碳
二四六硫都齐全
铜汞二价最常见
负一硝酸氢氧根
负二硫酸碳酸根
负三记住磷酸根
热门总结: 高二数学知识点总结
在我们的平时工作生活中,有时可能会需要写总结报告。通过总结,我们可以全面、系统地了解以往的情况。每次反思总结,就是在提醒我们:一个人刚开始做某件事的时候可能不会,但一直不会就是态度问题了。那么你知道怎么书写优秀的总结报告吗?小编特地为您收集整理“热门总结: 高二数学知识点总结”,仅供参考,欢迎大家阅读。
(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;
(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;
(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;
(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;
(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。
然说难度比较大,我建议考生,采取分部得分整个试
优质总结:初中毕业数学冲刺知识点回顾1篇
在日常的学习工作中,我们偶尔会需要写总结。总结是对过去的事情的简单概括,也是提升自己的关键因素之一。每多写一次总结,我们的进步就越显著:人是可以无限创造价值的存在,我们做的每一件事都值得被认真对待。那么你知道怎么书写优秀的总结报告吗?以下是小编为大家精心整理的“优质总结:初中毕业数学冲刺知识点回顾1篇”,供大家参考,希望能帮助到有需要的朋友。
中考冲刺数学知识点的几个复习建议:
1)所有的知识点自己先复习一遍,标记好那些掌握不扎实的知识,第二轮复习的重点!
2)对于标记不扎实的知识,如果实在不理解,回到课本中查收相应的内容,特别是结合例题理解
3)平常学校一定有很多练习,把做错的题目和难题当成宝贝,因为我们要想进步就这是捷径——理解消化错题,所有保持积极的心态去面对那些错题难题吧。
4)对于学过思维导图的同学,建议将这些知识点按章节梳理成知识体系,平常复习太好用了。
以下是详细的知识点:
一、一元一次方程根的情况
△=b2-4ac
当△>0时,一元二次方程有2个不相等的实数根;
当△=0时,一元二次方程有2个相同的实数根;
当△
① 两组对边分别平行的四边形叫做平行四边形。
② 平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③ 平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形
②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:
① 有一个内角是直角的平行四边形叫做矩形。
② 矩形的对角线相等,四个角都是直角。
③ 对角线相等的平行四边形是矩形。
④ 正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:
①N边形的内角和等于(N-2)180度
②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)
平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X
加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理 三角形两边的和大于第三边
16、推论 三角形两边的差小于第三边
17、三角形内角和定理 三角形三个内角的和等于180°
18、推论1 直角三角形的两个锐角互余
19、推论2 三角形的一个外角等于和它不相邻的两个内角的和
20、推论3 三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理( ASA)有两角和它们的`夹边对应相等的 两个三角形全等
24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理(SSS) 有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27、定理1 在角的平分线上的点到这个角的两边的距离相等
28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、推论1 三个角都相等的三角形是等边三角形
36、推论 2 有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、定理1 关于某条直线对称的两个图形是全等形
43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
48、定理 四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理 n边形的内角的和等于(n-2)×180°
51、推论 任意多边的外角和等于360°
52、平行四边形性质定理1 平行四边形的对角相等
53、平行四边形性质定理2 平行四边形的对边相等
54、推论 夹在两条平行线间的平行线段相等
55、平行四边形性质定理3 平行四边形的对角线互相平分
56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形
58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60、矩形性质定理1 矩形的四个角都是直角
61、矩形性质定理2 矩形的对角线相等
62、矩形判定定理1 有三个角是直角的四边形是矩形
63、矩形判定定理2 对角线相等的平行四边形是矩形
64、菱形性质定理1 菱形的四条边都相等
65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1 四边都相等的四边形是菱形
68、菱形判定定理2 对角线互相垂直的平行四边形是菱形
69、正方形性质定理1 正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1 关于中心对称的两个图形是全等的
72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性质:
如果a:b=c:d,那么ad=bc
如果 ad=bc ,那么a:b=c:d
84、(2)合比性质:
如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性质:
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例
90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94、判定定理3 三边对应成比例,两三角形相似(SSS)
95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、性质定理2 相似三角形周长的比等于相似比
98、性质定理3 相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理 不在同一直线上的三点确定一个圆。
110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
【总结分享】高二数学必备知识点回顾 月度范文精选
我们在平时的学习与工作中,在一些情况下会需要我们写总结报告。写总结可以推动我们的工作向前不断前进。每写一次总结,就让我们多一份思考的机会:一个人可以被打败,但绝不可以被打垮,就像工作一样,应当全力以赴。那么我们在写总结的时候要特别注意什么吗?为满足您的需求,小编特地编辑了“【总结分享】高二数学必备知识点回顾 月度范文精选”,欢迎阅读,希望您能阅读并收藏。
1.抛物线是轴对称图形。对称轴为直线
x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P(-b/2a,(4ac-b^2)/4a)
当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a0时,抛物线向上开口;当a0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab0),对称轴在y轴左;
当a与b异号时(即ab0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ=b^2-4ac0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ=b^2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)