1、抛物线是轴对称图形。对称轴为直线x=—b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2、抛物线有一个顶点P,坐标为:P(—b/2a,(4ac—b^2)/4a)当—b/2a=0时,P在y轴上;当=b^2—4ac=0时,P在x轴上。
3、二次项系数a决定抛物线的开口方向和大小。
当a0时,抛物线向上开口;当a0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4、一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab0),对称轴在y轴左;
当a与b异号时(即ab0),对称轴在y轴右。
5、常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6、抛物线与x轴交点个数
=b^2—4ac0时,抛物线与x轴有2个交点。
=b^2—4ac=0时,抛物线与x轴有1个交点。
=b^2—4ac0时,抛物线与x轴没有交点。X的取值是虚数(x=—bb^2—4ac的值的相反数,乘上虚数i,整个式子除以2a)