1、经历探索和发现积的变化规律的过程,会用简单的语言表达积的变化规律,能运用这一规律解决问题。
2、经历观察、比较、猜想、验证和归纳等一系列的数学活动,初步获得探索数学规律的一般方法和经验,发展归纳推理能力和运算能力。
3、在学习过程中培养探索精神和合作交往能力,并在探索活动中获得成功的体验,增强学习数学的兴趣和自信心。
[教学重点]
探索并掌握积的变化规律。
[教学难点]
掌握积的变化规律,并能正确熟练地运用这一规律进行计算。
[教具学具]
多媒体课件
[教学过程]
一、创设情境,提出问题
师谈话:同学们,开始新课之前,我们先来猜个谜语。怎样列式?其实这个问题的思考是有一定数学规律的,那么这其中的奥秘是什么呢?这就是这节我们要研究的——积的变化规律。看到这个课题,你想知道哪些问题?
同学们,请观察这一组算式,你发现了什么?今天,我们就来探究这组算式里面隐藏的秘密。(板书课题)
课件出示第二组算式:24×2= 12×2=6×2=
学生回答,教师板书。
师:请仔细观察这两组算式,你有什么发现?
8×2=16 24×2=48
8×20=160 12×2=24
8×200=16006×2=12
二、合作探索,学习新知
(一)自主探究
课件出示探究提示:
1、从上往下观察第一组算式:第一个因数有什么特点?第二个因数怎样变化?积有什么变化?你发现了什么规律?
2、从上往下观察第二组算式:第一个因数怎样变化?第二个因数有什么特点?积有什么变化?你发现了什么规律?
3、把你的发现和小组内的同学说一说,小组长做好记录。
根据提示,学生合作完成,教师巡视。
(二)交流
1、学生汇报探究提示第1题,总结变化规律,教师适时板书。
预设1:一个因数不变,另一个因数扩大到原来的多少倍,积也扩大到原来的多少倍。
预设2:第一组的第一个因数都是8,第二个因数从2到20到200,分别扩大到原来的10倍和100倍,积也扩大到原来的10倍和100倍。所以一个因数不变,另一个因数扩大几倍,积就扩大几倍。
2、学生汇报探究提示第2题,总结变化规律,教师适时板书。
预设1:一个因数不变,另一个因数除以几(0除外),积也要除以几。
预设2:第二个因数不变,第一个因数从24到12,缩小到原来的2倍,积也从48变到24,缩小到原来的2倍。
(三)提出猜想
师:同学们的发现非常有价值,你们能用一句话概括这些发现吗?
学生总结不完整时,可及时讨论补充。
课件出示结论:
两个数相乘,一个因数不变,:一个因数不变,另一个因数乘(或除以)几,得到的积也随着乘(或除以)几。
(六)质疑完善规律
师:你对这句话还有其他意见吗?还有特殊情况吗?
若生提不出,师可以提出“0”。
0是一个特殊情况,为什么?
0乘任何数都得0,0不能做除数。所以,这个规律还得加上一句话:“0除外”。
修正板书。
再次总结规律并齐读规律:一个因数不变,另一个因数乘(或除以)几(0除外),得到的积也随着乘(或除以)几。
师揭示:这个规律是数学上非常重要的一个规律,叫作积的变化规律。
三、巩固应用,内化新知
师:在大家的共同努力下探索出了积的变化规律,让我们来大显身手,解决以下问题吧。
1、判断:
(1)一个因数不变,另一个因数乘以10,积也乘以10。()
(2)一个因数扩大4倍,积一定扩大4倍。()
2、 5×14= 24×2=8×7=
50×14=24×4=80×70=
500×14= 24×8=800×700=
师:请同学们运用今天学习的规律,快速写出每组算式的得数,并在小组里交流一下,你是怎样算的。
全班交流时分别说一说每一组具体是怎样应用积的变化规律,尤其是第3组,明确两个因数都发生了变化,这是积的变化规律的拓展应用。
3、根据32×50=1600,直接写出下列各式的商。
32×50=16008×50= 32×5=
师:谁能说一说,不计算,你是怎样写出这些算式的得数的?
预设:第一个算式中,第二个因数50没变,第一个因数除以4,所以积也除以4,得出400。
小结:看来在解决实际问题中,积的变化规律可以使一些问题变得简单。
5、思考乐园。
算一算,想一想,你能发现什么规律?
18×24=432(18×2)×(24÷2)=?(18÷2)×(24×2)=?
发现规律(学生说不出时可以讨论):
一个因数乘(或除以)几,另一个因数除以(或乘)相同的数,积不变。
小结:积的变化规律就像孙悟空一样,会变魔术,我们要拥有一双火眼金睛,结合一些具体的算式,深入地理解和学习这个规律。这个规律应用得非常广泛,它可以使我们的计算变得有趣而简单。
四、回顾反思,总结提升
师:一节课马上就要结束了,谈谈这节课你有哪些收获?
预设:我知道了积的变化规律……
师:在探索积的变化规律时我们经历了怎样的过程?
预设:观察—猜想—验证—得出结论
结束语:其实,数学就是一门研究规律的科学,生活中,处处有数学,处处有规律,我们一定要带着会发现的眼睛去探索数学的奥妙,生活的奥妙!