读《数学教育中的数学文化》 心得
我们从一些事情上得到感悟后,就十分有必须要写一篇心得体会,这样我们可以养成良好的总结方法。怎样写好心得体会呢?下面是小编整理的读《数学教育中的数学文化》 心得,欢迎大家借鉴与参考,希望对大家有所帮助。
文中指出:“课程形态的数学文化是反映数学文化研究的成果,它从可操作的实践层面为数学文化教育价值奠定基础;它从哲学的层次,用通俗的语言表达深刻的数学思想观念系统,并以一定的形式呈现给学习者。”“在数学教学中,教师应通过“数学文化”的传播、交流、体验和感悟,使学生加深对数学文化特性的了解和数学本质的认识,从而使学生树立正确的数学观。让学生在学习数学的过程中受到一定的文化感染,产生文化共鸣,体验到数学文化的品味和世俗的人情味。”怎样挖掘数学文化素材,融入平时的数学课堂教学?我觉得可以从以下几个方面进行尝试:
一、数学家与数学发明
在平时的备课过程中,应该注意对一些数学家相关的故事进行收集并作熟悉的了解,这样当在课堂上讲到相关内容、与学生交流、数学课外活动时就可以信手拈来,随时插入课堂教学中对学生进行数学文化的人文价值教育。如,在解决“如果每对兔子每月可生一对小兔,每对小兔在第二月也可以生产一对小兔,如此继续下去,且不发生死亡,问一年中共可生兔多少对”这一问题时,可以向学生介绍意大利数学家斐波那契的斐波那契数列的知识;在进行“圆柱体体积计算公式”教学时,可以先介绍曹冲称象的故事;在讲解“等差数列求和公式”时可以向学生介绍德国的“数学王子”高斯的小故事等等。总之,以数学家为线索的数学文化源远流长、包罗万象,我们可根据教材所涉及的知识介绍不同层次的相关内容,激发了学生学习的兴趣。
二、美学与数学文化
文化的美学观是构成数学文化的重要内容.古代数学家、哲学家普洛克拉斯断言:"哪里有数,哪里就有美."开普勒也说:"数学是这个世界之美的原型."对数学文化的审美追求已成为数学得以发展的重要动力.以致法国诗人诺瓦利也曾高唱:"纯数学是一门科学,同时也是一门艺术.既是科学家同时又是艺术家的数学工作者,是大地上的唯一的幸运儿.在教学过程中应引导学生去发现数学中的美。符号是数学的一大特征。有些人见到一个个符号就犹如听到一个个美丽动听的音符;有些人见到了符号就眼花,搞得晕头转向、不知所以,这与他们对符号本身的认识程度有关,所以在课堂教学,适当介绍一些数学符号的来龙去脉,无疑有助于提高学生对符号的深刻认识,并从中得到乐趣。比如,在立体几何课应该适当提及到学生感兴趣的美术绘画,传授学生如何把立体的图形画在平面上。
当然,教师应该注意提高自身的美学修养,要有对学生进行美学教育的意识,让学生体会到数学是赏心悦目的,使追求和探索数学中的美成为学生学习数学的动力,并引导学生利用数学中的美陶冶性情,实现数学的文化教育功能。
三、文学与数学文化
数学和文学的思考方法往往是相通的。举例来说,数学课程里有“对称”,文学中则有“对仗”。对称是一种变换,变过去了却有些性质保持不变。数学中的轴对称,即是依对称轴对折,图形的形状和大小都保持不变。那么文学中的对仗是什么?以王维所云:“明月松间照,清泉石上流”为例来说,这里,上联对下联,其中字词句的某些特性不变,如“明月”对“清泉”,都是自然景物,没有变。形容词“明”对“清”,名词“月”对“泉”,词性不变,看其余各词均如此。不难发现,变化中的不变性质,在文化中、文学中、数学中,都广泛存在着。数学中的“对偶理论”,拓扑学的变与不变,都是这种思想的体现。文学意境也有和数学观念相通的地方。徐利治先生早就指出:“孤帆远影碧空尽”,正是极限概念的意境。
四、诗歌与数学文化
尽管诗歌与数学在我们今天看来属于两种不同的文化,但从历史上看,两者却有着千丝万缕的联系:数学问题和解答、运算法则常常以诗歌形式来表达。在数学教学中如果能有机地将这些数学诗歌融入课堂中,让学生充分感受诗歌中的数学美,不仅能提高学生学习数学的兴趣,而且能使学生对数学有更深的理解。如著名的“李白打酒诗”:李白街上走,提壶去打酒。遇店加一倍,遇花喝一斗。三遇店和花,喝干壶中酒。试问酒壶中,原有多少酒?该诗的大意是:李白在大街上走,提着酒壶边喝边打酒,遇到酒店将酒壶中的酒加倍,见到花就喝一斗酒,三次遇到酒店,三次见到花,最后喝光了壶中的酒,原来壶中有多少酒?用逆向思维知,最后遇见的一定是花。因此依次遇到的是酒店、花、酒店、花、酒店、花。设原来壶中有酒x斗,由题意可知:2【2(2x-1)】-1=0.解方程,得x=7/8
总之,要在数学教学中渗透数学文化离不开数学史,但又不能仅限于数学史,还应该有一些“非数学”的内容。教师只有结合学生实际,精心创设教学情境,努力诱发学生强烈的求知欲,为学生学习做好充分的课堂准备,才能将数学文化的魅力真正融入教材、到达课堂、溶入教学,才能让学生进一步理解数学,喜欢数学、热爱数学,从而主动探索,进而获取知识。
【读《数学教育中的数学文化》 心得】: