您的当前位置:首页正文

行测数量关系之“你难我不难”的工程问题

2024-08-17 来源:伴沃教育
  行测考试中数量关系一直是考生的难点、痛点。很多考生表示,在考试的时候,数量关系全靠蒙,但其实,数量关系并不难。今天小编就带大家一起来学一下,你认为难但其实只要掌握正确的解题方法,一点也不难的工程问题。

  工程问题在考查时,题型形式五花八门,但是,万变不离其宗,其考查的核心都是:工作总量=工作效率×工作时间。在解题时,通常可以采取设特值的方法求解。常见的设特值方式有两种:

  一、已知多个主体的完工时间,设工作总量为“1”或为多个完工时间的最小公倍数。

  某项工程,甲施工队单独干需要30天才能完成,乙施工队需要40天才能完成。甲、乙合作干了10天,因故停工10天,再开工时甲、乙、丙三个施工队一起工作,再干4天就可全部完工。那么,丙队单独干需要大约()天才能完成这项工程。

  A.21 B.22 C.23 D.24

  【解析】B。


  方法二,设该工程总量为120(30和40的最小公倍数),则甲、乙的工作效率分别为4、3。前10天甲、乙共做了10×(4+3)=70,剩余工作量为120-70=50,甲、乙、丙合作的工作效率之和为50÷4=12.5,则丙的工作效率为12.5-7=5.5,丙单独完成该项工程,需要120÷5.5≈22天。故本题选B。

  根据例题的两种解法我们可以发现,当题干中给多个主体的独立完工时间时,两种方法都需要通过设特值的工作总量求解出工作效率,进而求解最终的问题,但在第一种解法中,所求出的工作效率为分数,计算时还需要进行通分,较为麻烦,并且容易出错,而第二种方法中,可以效率几乎是整数,计算时更简洁,因此,在题干中给多个主体的独立完工时间时,推荐大家设工作总量为多个完工时间的最小公倍数。

  二、已知多个主体的效率比,将效率特值为最简比的数值。

  甲、乙、丙三个工程队的效率比为6∶5∶4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B工程。两项工程同时开工,耗时16天同时结束。问丙队在A工程中参与施工多少天?

  A.6 B.7 C.8 D.9

  【解析】A。

  设甲、乙、丙三个工程队的效率分别为6、5、4,故工作总量为(6+5+4)×16=240,A工程的工作量为240÷2=120。则有120=6×16+4×t,解得t=6天。故本题选A。

  通过上面两道题,大家也可以发现,虽然工程问题的题干看起来比较复杂,但考查内容非常固定,就是工作总量、工作效率、工作时间三者之间的关系,只要大家在做题时,明确题干所求和所给量,用对应的解题方法求解即可。

更多
没有了   |  
相关文章
相关问题
显示全文