发布网友 发布时间:2022-04-21 22:25
共6个回答
热心网友 时间:2022-06-22 15:05
定义:
导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
几何意义:
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
扩展资料:
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性*近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
参考资料:百度百科——导数
热心网友 时间:2022-06-22 16:23
导数的定义是:当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质,一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
扩展资料
导数的性质特点有:
1、不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。
2、可导的函数一定连续;不连续的函数一定不可导。
3、若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
4、若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
参考资料来源:百度百科-导数
热心网友 时间:2022-06-22 17:58
导数的定义就是:若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续,不连续的函数一定不可导。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性*近。
在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。
扩展资料:
根据微积分基本定理,对于可导的函数,有:
如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。
对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。x变化时函数(蓝色曲线)的切线变化。函数的导数值就是切线的斜率,绿色代表其值为正,红色代表其值为负,黑色代表值为零。
参考资料来源:百度百科-导数
热心网友 时间:2022-06-22 19:49
你后面的解答是正确的
实际上f(x)=f(0)+2x+a(x)
那么按照导数定义
f'(0)=lim(x趋于0) [f(x)-f(0)]/x
=lim(x趋于0) [2x-a(x)]/x
=lim(x趋于0) 2-a(x)/x
已经告诉你后者趋于0的
那么当然得到f'(0)=2
热心网友 时间:2022-06-22 21:57
f '(x₀)=lim[x→x₀] [f(x)-f(x₀)]/(x-x₀) ①
f'(x)=lim[Δx→0] [f(x+Δx)-f(x)]/Δx ②
已知条件指明求某点处可导就用第一个,反之,不指明具体哪个点,一般可以采用第二个。追问那道题怎么写呢……
热心网友 时间:2022-06-23 00:22
此题要用到导数的定义。