发布网友 发布时间:2022-04-20 09:23
共4个回答
好二三四 时间:2022-10-06 14:14
二阶中心距是方差。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。
概率论,是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。
热心网友 时间:2023-10-04 17:16
两者之间没有区别,因为没有样本二阶中心距一说。样本方差的具体介绍如下:
样本方差的求法:先求出总体各单位变量值与其算术平均数的离差的平方,然后再对此变量取平均数,就叫做样本方差。样本方差用来表示一列数的变异程度。样本均值又叫样本均数。即为样本的均值。均值是指在一组数据中所有数据之和再除以数据的个数。
在许多实际情况下,人口的真实差异事先是不知道的,必须以某种方式计算。 当处理非常大的人口时,不可能对人口中的每个物体进行计数,因此必须对人口样本进行计算。样本方差也可以应用于从该分布的样本的连续分布的方差的估计。
扩展资料:
样本方差的意义:
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
参考资料来源:百度百科-样本方差
参考资料来源:百度百科-方差
热心网友 时间:2023-10-04 17:16
两者之间没有区别,因为没有样本二阶中心距一说。
先求出总体各单位变量值与其算术平均数的离差的平方,然后再对此变量取平均数,就叫做样本方差。样本方差用来表示一列数的变异程度。
当数据分布比较分散时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
实际上
样本方差可以理解成是对所给总体方差的一个无偏估计。E(S^2)=DX。
n-1的使用称为贝塞尔校正(Bessel's correction),也用于样本协方差和样本标准偏差(方差平方根)。 平方根是一个凹函数,因此引入负偏差(由Jensen不等式),这取决于分布,因此校正样本标准偏差(使用贝塞尔校正)有偏差。 标准偏差的无偏估计是技术上的问题,对于使用术语n-1.5的正态分布,形成无偏估计。
以上内容参考:百度百科-样本方差
热心网友 时间:2023-10-04 17:17
两者之间没有区别,因为没有样本二阶中心距一说。样本方差的具体介绍如下:
样本方差的求法:先求出总体各单位变量值与其算术平均数的离差的平方,然后再对此变量取平均数,就叫做样本方差。样本方差用来表示一列数的变异程度。样本均值又叫样本均数。即为样本的均值。均值是指在一组数据中所有数据之和再除以数据的个数。
在许多实际情况下,人口的真实差异事先是不知道的,必须以某种方式计算。 当处理非常大的人口时,不可能对人口中的每个物体进行计数,因此必须对人口样本进行计算。样本方差也可以应用于从该分布的样本的连续分布的方差的估计。
扩展资料:
样本方差可以理解成是对所给总体方差的一个无偏估计。E(S^2)=DX。
n-1的使用称为贝塞尔校正(Bessel's correction),也用于样本协方差和样本标准偏差(方差平方根)。
平方根是一个凹函数,因此引入负偏差(由Jensen不等式),这取决于分布,因此校正样本标准偏差(使用贝塞尔校正)有偏差。 标准偏差的无偏估计是一个技术上涉及的问题,尽管对于使用术语n-1.5的正态分布,形成无偏估计。
参考资料来源:百度百科-样本方差
参考资料来源:百度百科-方差
热心网友 时间:2023-10-04 17:17
样本方差与样本二阶中心距相差一个因子(n-1)/n,即
M2= (n-1)/n * S^2,如果样本数量够大,那两个基本是一样的.