发布网友
共1个回答
热心网友
多重分形理论是目前研究十分活跃的一门新兴学科。如果说分形理论研究具有自相似性的不规则几何问题的话,那么多重分形将主要运用于定义几何体上(包括分形几何体)具有自相似或统计自相似性的某种度量或者场,比如岩石中微量元素的含量,某一区内测量的地球物理场,或者单位面积内的矿产地分布密度等。通过这种测量可将其所定义的几何体(或二维面积)分成一系列空间镶嵌的具不同特点的子几何体(或子面积),每种这样的子几何体(或子面积)会构成一种分形,而且具有其自身的分形维数。这种分形的总体将对应一种所谓分形维数谱函数。自然界中许多物理及化学过程会产生*分形结果,比如在地球化学中具有广泛应用前景的Mulplicative Cascade过程、Diffussion limited aggregatio(DLA)、Turbu-lence、Brownian过程等。这些过程的共同特点是其所产生的结果既具有确定性又具随机性。通过*分形的研究使数学、物理和化学中许多具有随机和确定双重性质以及奇异性的疑难问题得到了解答。这些成果必将对地质包括地球化学的各个领域产生重要影响。
地球化学元素分布规律的研究是揭示元素矿化富集及空间变化规律的重要途径之一。地球化学数据的统计特征常常用来描述和刻画地球化学元素的分布规律。统计方法之所以能用于研究地球化学元素的分布规律不仅是由于地球化学取样和对样品进行的各种化学分析结果常具有不确定性,而且元素在地壳中的分布本身就具有不均匀性和区域随机性。从具有随机性的地球化学数据中了解元素分布规律是地球化学研究者所面临的重要挑战。统计方法在这方面起着不可替代的作用。然而人们早已注意到普通的统计方法并不考虑样品的空间分布和统计特征随空间度量尺度的变化性。此外,由于一般的统计方法是建立在统计大数定量基础之上的,因而这些统计方法(一、二阶矩有关的统计方法)往往对度量元素的一般值效果较好。严格地说它们并不具备刻画异常值的功能,分形理论则是研究这类复杂系统时空结构特征的有效途径,可以通过多重分形理论清楚地反映出统计方法的局限,而且能有效地克服统计方法的不足,它是一种研究具有自相似或统计自相似场的分布规律和描述场值的奇异性的有效方法,可以用于研究与矿化有关的微量元素在岩石、水系沉积物和土壤等介质中的空间分布和富集规律(陈春仔等,1998;成秋明,2000;谢淑云等,2003;AgterbergFP等,1994;ParedesC等,1999)。与矿化有关的微量元素地球化学场具有多重分形结构特征,微量元素的背景值往往服从正态或对数正态分布,然而高低异常值服从多重分形分布(ChengQ等,1994,1996,1999;成秋明,2004)。本次研究应用多重分形的面积校正累计频率法,对铜陵天马山矿区的18个微量元素进行了研究,初步探讨了主成矿元素、伴生元素和非成矿元素的空间变化和矿化富集规律,为天马山地区进一步找矿预测提供依据。
1.计算方法
地球化学采样点往往不是网格化的,局部区域可能采样较密或较稀甚或缺失。若直接应用原始样品分析数据进行元素含量频率分布研究,则可能过分强调采样较密的局部区域而相对忽视采样较稀的局部区域,不能真实地反映区域内元素含量值的分布特征。浓度-面积法[299]计算大于含量值ci(i=1,2……n;n为含量值分组数cmin≤ci≤cmax)的面积S(C≥ci),然后在双对数坐标下考察ci~S(C≥ci)间是否存在幂率关系即分形。对于S(C≥ci),采用两种途径来确定:①在对原始数据加权移动平均(weightedmovingaveragemethod)插值后制作的地球化学等值线图上,S(C≥ci)为含量值C大于ci的等值线圈闭的区域面积;②统计原始含量数值的盒子,即用边长确定的正方形网格覆盖研究区,S(C≥ci)等于具有含量值大于ci的正方形网格数。如果在正方形中不止一个样品,则取平均值作为该网格的含量值。众所周知,等值线的计算意味着网格结点的估值运算,运用移动平均、距离系数加权移动平均、克里格法和泛克里格法等网格估值方法可能产生不同的效果;局部特高值点(outlier)可能使邻近网格点的估值普遍偏高,导致孤立高值点拉高一大片;内部的采样空白区也可能以很不准确的估计值来代替。由此看来,方法①存在着固有的不足。本文采用方法②,即面积校正累计频率法研究元素含量频率分布,其计算步骤如下:
以一网格覆盖采样区域,记采样空间坐标(x,y)的最小、最大值分别为xmin,xmax,ymin和ymax,则x和y方向的网格数nx和ny应满足:
危机矿山深部隐伏矿大比例尺定位定量预测技术研究
式(8-5)表明x,y方向应具有相同的网格间距,式(8-6)说明总网格数乘以平均网格密度d应为总样品数n。由式(8-5)、式(8-6)可解出nx和ny,从而确定所需的覆盖网格。平均网格密度d值可取1~2,使得采样较密区域的网格内有2个或2个以上样品,采样较稀区域的网格内有1个样品,部分网格内没有样品,即为采样空白区。过大的d值会产生数据的“平滑”。本研究由于采样点为网格化的,采用d值为1.5。
斜交参考因子得分Y(i,1)正异常中心有3个,分别位于测区东部46线、50线和66线,显示有一期Au、Hg、Sb、Pb、Ag、As组合元素的富集出现在距天鹅抱蛋山岩体较远处,与岩体成因关系不明显。
计算各个网格元素含量平均值C,并对C值进行累计频率计算,即选定一组c={ci}(i=1,2……n)为非空网格数cmin≤ci≤cmax,统计所有网格平均值C大于c的网格数N(C>c),最后在双对数坐标下绘制c-N(C>c)曲线。因C值反映了采样面积校正后的含量分布,称其为面积校正累计频率(area-calibratedaccumulative-frequency,ACAF)法,其结果与浓度-面积模型方法①只相差一个常系数,即单位网格的面积,不影响双对数坐标下曲线的形态。可见,ACAF既消除了由于样品点分布不均一的影响,又不会因孤立高值点导致其邻近等值线畸变和难以剔除采样空白区等,且算法简单。
ci值按下式确定:
危机矿山深部隐伏矿大比例尺定位定量预测技术研究
式中:Cmin为最小平均含量;Cmax最大平均含量;δ为校正系数。ns为计算累计频率的分组数因元素不同而取值不一。使得ci在对数坐标下为等距,否则容易导致数据点在低含量区过稀而在高含量区过密,影响对其分布模式的总体认识。
2.讨论
1) 在图8-15中,元素含量(c)与个数(N)的投影点呈现出连续的曲线分布趋势,而不是单一的直线分布所表示的简单分形,显示出一种连续分布趋势的多重分形特征。
图8-15 天马山微量元素含量的ACAF曲线
2) 双对数坐标下各元素含量的曲线有两近似线性段。第一近似线性段大致反映了介于检出限到测定下限之间或测定下限附近的低值波动;另一近似线性段跨越了主要的含量区间,反映了地球化学场的内禀分形特征。参数b1、b2(表8-18)为这两个近似线性段经最小二乘拟合的直线斜率的负值,即累计频率分布的幂率。
表8-18 天马山微量元素多重分维值
3) 元素含量频率分布曲线上的两近似线性段之间为连续过渡,并有截然的转折点,且第一直线段只反映了介于检出限到测定下限之间或测定下限附近的低值波动。
4) 在部分图像中出现了星点状尾现象,均为高值点,当星点状尾位于拟合直线下端时,表明该元素在矿区有为局部矿化富集趋势。
5) 分维数b定量地刻画了元素含量在空间分布上的丛集程度和不均匀程度。根据有些学者利用分数的维数b表示元素的分布偏离正态分布的程度。多分维b数值反映了多次矿化事件的叠加,一个分数维b值代表了一次矿化(成矿阶段或成矿期),本区亦可分为多期成矿阶段。从分形曲线的拐点也可以判断矿区存在多期次成矿活动,因此多分形研究对确定不同成矿期次及同一成矿期次的不同成矿阶段是有意义的,但对成矿期次的判别除据拐点分布情况外,还应据矿床地质的研究。
6) 与传统统计方法中聚类分析所得到类别相比较,可以发现多重分形分类得到结果与聚类分析所得到结果有较强的一致性,两者的分类几乎完全一致,这也说明分维值的计算结果是合理可信的。元素中b2值的大小变化可以解释为:b2值越小,即直线越平缓,元素的低含量点到高含量点的变化频率下降的越慢,元素含量在空间上的丛集程度越高,就存在着较多的高含量点,有富集成矿的趋势;b2值越大,则高含量点分布较少,主要含量点集中在低含量区,也就不存在大规模富集成矿的可能。